What Does Time Have To Do With?

Time, some people think there is not enough of it in the day; some people would say that there is too much. Regardless of whose opinion you consider, we can all agree upon one thing. Time is a measuring system; used as a major subject in religion, science, and philosophy. It controls every aspect of our lives so much that we are constantly checking the clocks and planning everything we do around it. There are many different systems of time: Atomic Time, Universal Time, Dynamic Time, Terrestrial Time, etc. (Matsakis). For this paper, however, I will be concentrating more on the concept of time, how the Maya calendar system was composed, and what kind of relationship it has with present day Salvadorians.

To start off, I would like to state that time is an illusion. It is not a real tangible thing that can be seen or touched, but is more of a thing of our imagination. Would time still exist if we did not see change happening around us? Our Western concept of time is linear and derives almost directly from astrology. We study the endless repetitious movements between the solar bodies and our own fixed planet. This allows us to create some sort of measure of time. The development of clocks likewise has allowed us to create a more accurate measure of time. However, the visual changes on our planet also present us with a sense of passage of time. Watching water cascade over a cliff gives some sense of passage. Watching a vehicle go by, to become smaller and smaller on the horizon gives us a sense of passage. The life and death cycle also gives us a sense of passage. Unfortunately, none of these examples gives us a true definition of time and, in truth, I do not believe there is a true definition.

In a philosophical sense, there are two theories on time and space. One is the absolute or Newtonian theory and the other is the relational theory. Absolute theory implies that time exists
independently of the space-time relation of physical events. Relational theory states that it does not. To state more simply, absolute theory describes space-time as a container or dimension for events. It would exist with or without the events. Relational theory implies that there is no container and we gain a sense of time and space by comparing objects to other objects (Dowden, 2007). I also encountered some experts who argue that time is an affect of language. Without language, one would have no sense of the passage of time (Zerzan). I would argue this point simply because one does not need language to visually see things like the waterfall or the vehicle, or the cycle of life and death. But language does help one to describe what one has seen and to be able to record it for future generations.

To switch gears, explaining the Maya concept of time is quite simplistic. They believed that time follows a linear system, just as us Westerns believe. This system means that time has a constant flow, in which one thing happens after another. In contrast, the Eastern circular system believes that time repeats itself day after day after day. To explain the Maya calendar, one needs to know three main components used in its construction. First is the long count. The long count is a mixed based-20/based-18 representation of a number that represents a day (WebExhibits). In date form, long count would look as such: 0.0.0.0.0. The basic unit is the kin, or day, and is the last number in the long count. Going right to left, the following units following the kin: the uinal, which equals 20 days, the tun, which equals 1 year, the katun, which equals 20 years, and the baktun, which equals 394 years (WebExhibits). The kin, tun, and katun numbers range from 0 to 19, the uinal numbers range from 0 to 17, and the baktun numbers range from 1 to 13 (WebExhibits). Although not mentioned in the long count, the Maya had names for larger spans of time such as the pictun, which equaled 7,885 years; the calabtun, which equaled
approximately 158,000 years; the kinchiltin, which equaled approximately 3,000,000 years; and
the alautun, which equaled approximately 63,000,000 years (WebExhibits). The first day in the
long count, logically should look like 0.0.0.0.0, but since the baktun ranges from 1 to 13, the first
day instead looks like 13.0.0.0.0. This could have been the Mayas’ idea of the creation of the
world (WebExhibits).

The second component of the Maya calendar I would like to introduce is the Tzolkin. The Tzolkin is the Maya combination of two “week” length (WebExhibits). Our calendar uses a
single week length composed of seven days but the Maya calendar had a numbered week of 13
days and a named week of 20 days (WebExhibits). The names of each day in the 20-day week
are, in order: Ahau, Imix, Ik, Akbal, Kan, Chicchan, Cimi, Manik, Lamat, Muluc, Oc, Chuen,
Eb, Ben, Ix, Men, Cib, Caban, Etznab, and Caunac (WebExhibits). Each day also had a
corresponding symbol. One should also take notice that the 20-day week synchronized with the
smallest long-day count, which was also 20. Therefore, if the last digit of the long count was
zero, then it is be Ahau (WebExhibits). Each of the numbered and named weeks changed daily,
just as our calendar system does, which means that the day after 3 Cimi is not 4 Cimi, but 4
Manik (WebExhibits). The next Cimi rolls around 20 days later and will be 10 Cimi. The next 3
Cimi does not occur until after 260 days have passed (WebExhibits).

The last component of the Maya calendar was the Haab. The Haab was the civil calendar
and consisted of 18 months, each 20 days long, followed by 5 extra days known as Uayeb. With
this totaling, a year of consisted of 365 days (WebExhibits). The names of the month were, in
order: Pip, Uo, Zip, Zotz, Tzec, Xul, Yaxkin, Mol, Chen, Yax, Zac, Ceh, Man, Kankin, Muan,
Pax, Kayab, and Cumka (WebExhibits). Unlike the Tzolkin dates, which changed daily, the
Haab dates changed only every 20 days. Five Zotz was followed by 6 Zotz…up to 19 Zotz, which then went back to 0 Tzec (WebExhibits). The use of the 0th day of the month is unique to the Maya calendar and belief is that the Maya discovered the number zero long before Europe or Asia did (WebExhibits). Going back to the Uayeb days, these days were associated with bad luck and often were times of prayer and mourning. Anyone born on these days was “doomed to a miserable life” (WebExhibits). Since the length of the Tzolkin was 260 days and the length of the Haab was 365, one finds that the smallest number evenly divided by both is 18,980. This cycle, known as the Calendar Round, took place every 52 years and brought about public panic as the people assumed the world was ending (WebExhibits). This system took into account three different calendars, making it more accurate than the European Gregorian calendar.

Lastly, I would like to discuss a little about how the Maya concept of time still has some bearing on modern day Salvadorians. Today, El Salvador rests in the Central Time zone just like Minnesota. Since the Maya believed time was linear, that belief passed down directly to the Salvadorians. The Salvadorians see everything as happening in sequence, one after another. Like many western cultures, Salvadorians see punctuality as a thing of great importance. Many of its people get up extremely early to start their day and work late into the evening. This can be seen in Manlio Argueta’s One Day of Life by the fact the book starts at 5:30 A.M. and ends at 5 P.M. (Argueta 1991 p. 3 & 213).

In conclusion, I hope I was able to give you a brief description of time, as well as give you an understanding of how the Maya calendar was composed and how it relates to modern day El Salvador. As I stated before, time is an imaginary thing that exists only in the context of our minds. It can be measured with clocks and seen in the changes that happen around us, but it in
truth is intangible. Whether you think there is too much or too little during the course of the day,
I hope we can all agree to that.
Bibliography


Internet Encyclopedia of Philosophy: http://www.iep.utm.edu/t/time.html#H6


Through The Ages: http://webexhibits.org/calendars/calendar-mayan.html

http://www.primitivism.com/time.htm
Yes, but ALSO in terms of what YOUR REALITY is, like what you grow and what the connection is between WHAT you grow and how TIME is important to it. In other words, I think you can conclude a little stronger than you do (particularly if you take another look at the way you BEGIN in your intro.

There’s some VERY good stuff here, Josh, and you’ve got good sources, but, depending upon whether you AGREE with me that TIME might be just a bit more complex for MAYANS as well as for SALVADORANS, I’d like you to go back in and fill in the blanks. If you DO...

1. Polish your LEAD and sharpen your intro, MAYBE adding ONE MORE DIRECTIVE SENTENCE which really CASTS your THESIS.

2. Add that ONE MORE PARAGRAPH I’ve talked about on the second-to-last page about the COMPLEXITY of time in ODOL—you’ll NEED CONCRETE QUOTES and INTERNAL CITATIONS to build a FIRM CASE (you’ll need this no matter WHAT POSITION you take).

3. Add one more paragraph of ANALYSIS and INTERPRETATION of the Mayan calendar on p. 3.

4. Do a little PARAGRAPH work.

5. REPAIR a little sentence structure, and attend to some wordiness that happens in a couple of your topic sentences.

6. Carefully EDIT the mechanics, grammar, and punctuation throughout your paper.

There is a LOT to build on here, Josh. Finish it off.